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Introduction

Advances in machine learning have produced neural networks capable of providing

massive value to end users. Generative Pre-Trained Transformers (GPTs) are particularly

useful, but in a naive FP32 weight format are prohibitively expensive to run. On consumer

hardware, FP32 inference is simply not possible except for very small, low-utility models. Neural

networks, through herculean efforts (Lin et al., 2024; Badri et al., 2023, Frantar et al., 2023;

Egiazarian et al., 2024; Tseng et al., 2024), can be compressed to 4 bit integers, eighth

precision, with tolerable loss in quality. However, these new methods do not have well optimized

implementations like BLIS, OpenBLAS, and Intel oneMKL provide for FP32 (Zee et al., 2015;

OpenMathLib). This investigation will look at different strategies for mapping quantized

matrix-vector multiplies to CPU SIMD and integrated graphics on Intel SoCs.

Motivation

Adoption of digital technology has been a catastrophe for privacy (Greenwald, 2013).

Legal protections, such as the 4th amendment, have so far failed to mitigate this (Volz, 2024).

Only architectural defenses built into consumer technology that make surveillance impossible

will reverse this ghastly phenomenon. Multi tenant networked devices are not securable against

nation state adversaries (Larin, 2023). Any real improvement in privacy is a feature complete

replacement with no networking at all. LLMs are the biggest privacy innovation since PGP

because they can power a device for offline and un-surveillable Q&A. Such a device needs an

inference library that can produce reasonable quality generations at reasonable speed on a low



power (Laptop Grade) CPU-SoC. This paper tries to improve the state of art, GGML, to bring

this theoretical device closer to reality.

Background

Issues With SGEMV For Efficient NN Inference

Single Precision General Matrix Vector Multiply (SGEMV) performs a matrix vector

multiplication on 2 FP32 arrays. There are many fantastic implementations like BLIS,

OpenBLAS, CLBlast (integrated graphics), and the proprietary Intel Math Kernel Library, now

part of Intel oneAPI. It would be ideal if these libraries could be used to inference neural

networks efficiently.

Of course, I tried that first. Andrej Karpathy wrote a library, llama2.c, that can inference

small llama GPTs. Built for simplicity and instruction, llama2.c uses a naive c SGEMV

implementation relying on compiler auto vectorization and OpenMP for speed. Clearly one of

the highly optimized libraries should be able to improve performance. Shockingly, use of MKL

slowed down token generation by 25%. Experimental details and data are in Appendix A.

This seems like a puzzling result, but makes sense when memory bandwidth is

considered. All DRAM systems can only transfer a finite amount of data to the chip per unit time.

Intel VTune benchmarked my 16GB of DDR4 at 50 GB/s. Running MKL GEMM showed 200

GFLOPS was possible in practice, although the theoretical FLOP throughput is 300 GFLOPS1.

An SGEMV invocation (m, n) @ (n,) will require m * n * 4 bytes from memory and m *

n * 2 FLOPS2. The runtime can be estimated with

2 I don’t include the input in the loads figure, since this is small compared to the matrix and will remain in
cache. Otherwise there are m * n * 4 + n * 4 byte loads.

1 16 FLOPS/CORE/CYCLE * 4 cores * 4.7 GHz ≈ 300 GFLOPS

https://github.com/karpathy/llama2.c


min(bandwidth_in_bytes / 4mn, max_flops / 2mn)

SGEMV is compute bound when …

max_flops = bandwidth_in_bytes / 2

Memory bandwidth must be twice the available FLOPS in order to achieve full utilization of

available compute. In order for FP32 to get 200 GFLOPS of throughput I’d need 400 GB/s, 8x

more than I have. With 50GB/s, my system is limited to 25 GFLOPS of SGEMV throughput. No

amount of optimization magic from Math Kernel Library can mitigate this. Thus, a naive

implementation is able to match it closely.

Quantization and EGEMV

Slow inference is unacceptable, so we need to either reduce the number of byte loads,

or reduce the number of floating point operations. I think that both vectors of attack will need to

be pushed to the limit to match GPU powered websites like chat.openai.com. This paper

focuses on reducing the number of byte loads with quantization.

Quantization is the process of representing high precision floating point values in a

compressed integer format. This paper targets a quantization output where weights are 4 bits

each with size 128 groups along output channels sharing a scale (FP32) and a zero value (4

bits). Because 4 bits is one eighth of 32 bits (single precision), I call this routine Eighth Precision

General Matrix Vector Multiply, EGEMV. This quantization scheme actually produces 4.281253

bits per weight, but is the best that the field can deliver at the time of publication.

The process of determining this representation with minimal computational effort and

with minimal impact on quality is its own field. GPTQ (Franter et al., 2023), AWQ (Lin et al.,

3 (128 * 4 + 4 + 32)/128 = 4.28125

http://chat.openai.com


2024), and HQQ (Badri et al., 2023) all produce this output, and I’m hopeful that even faster and

higher quality techniques will come in the future. There are other quantization methods that

achieve <4 bits per weight through the use of codebooks (Tseng et al., 2024; Egiazarian et al.,

2024), but do not lower memory traffic due to the need to reload codewords multiple times for

different channels. In the event that grouped output channel quantization becomes obsolete,

high level lessons of this paper may still be useful for writing NN ops for those new techniques.

Equation 0: Unquantized Multiply Accumulate

out(F32) += weight(F32)*input(F32)

Equation 1: Quantized Multiply Accumulate

out(F32) += (weight(u4)-zero(u4))(F32)*scale(F32)*input(F32)

*zero and scale are shared among 128 weight values

Activation Quantization vs. Weight Quantization

As the name indicates, Activation-AwareWeight Quantization converts weights from

FP32 to uint4. Activations, as shown in equations 0 and 1, are still in FP32. However, these

activations can also be held in a compressed format. The reason for this is not for conserving

memory bandwidth, although that’s an added benefit, but instead for the ability to use integer

math in registers. Rather than each matrix vector multiply taking FP32 input and producing

FP32 output to be passed to the next layer, you instead quantize the FP32 output values on the

fly to i8 before passing to the next layer. This is referred to as W4A8 as opposed to the above

W4A32.

Equation 3:W4A8 Multiply Accumulate



out(F32) += ((weight(u4)-zero(u4))(i8)*in(i8))*

scale(F32)*in_scale(F32)

*zero and scale are shared among 128 weight values

*in_scale is shared along 128 input values

Memory Layout

We have 3 matrices for every input FP32 weight matrix.

1. Weights: unsigned int4

2. Zeros: unsigned int4, (Group Size: 128 Weight Values)

3. Scales: FP324 , (Group Size: 128 Weight Values)

Ordering of values is important for achieving optimal performance. Unlike engineers working on

Netlib compliant BLAS libraries, I have control over the layout of the input matrices. This control

can be leveraged to ensure that no unnecessary loads take place and that any cache lines

loaded from DRAM are fully used before eviction. This memory layout should allow for an

optimal implementation on both the CPU and iGPU.

Figure 1 shows a fully row major representation of the 3 matrices. In order to use all

loaded 64 byte cache lines, the routine must process 128 zero values per row and (128*128)

16384 weight values per row before moving on to the next row. Most input matrices from small

language models are not this large.5

5 Llama FFN down_proj is (4096, 14336).
4 AWQ allows for FP16. FP32 is more convenient due to native support in C++.



Figure 2 shows an array of structs representation. There is only one array; The scale

and zero value are inlined with the weights. This is ideal for implementation simplicity and

correctness. However, there is no way to arrange this such that the byte width of the struct is

divisible by 64. By using this representation, we are resigned to load-and-abandon because we

will always load cache lines with no intention of use. GGML, the most popular consumer device

inference library, uses an array of structs representation for all of its quantization methods.

Benchmarks against GGML are shown later. (It works pretty well).



Figure 3 shows a column major representation of the 3 matrices. In order to use all

loaded 64 byte cache lines, one simply has to process 128 weight values per row for 128 rows.

This allows for far more flexibility in the weights partitioning for processing on heterogeneous

devices. The issue with this approach is that the weights are not able to take advantage of

AVX512-VNNI instructions for int8 multiply-accumulate. The weights are contiguous top to

bottom and thus a row-wise access is an expensive gather-scatter access.

Figure 4 shows the final memory layout, Row Major Block Contiguous, that I used in the

final EGEMV functions. It orders the weights row major for fast row-wise accesses. For

implementation simplicity, It treats the scales and zeros as arrays rather than matrices. Every

2D quantization block (128, 128) (one cache line/64 bytes in each direction) has a block_id

assigned left to right. By offsetting the global array pointer for scales and zeros by block_id *

128 the values for each row group of that block are contiguous. One can iterate through these

128x128 blocks in any order and be sure to use any loaded cache lines from memory.



SIMD-Aware Weight Interleaving

AWQ (Lin et al., 2024) suggested that weights be interleaved to avoid a shuffle

operation. AVX512 has a hard time shuffling bits across 128 bit lanes, so it’s advantageous to

avoid it somehow. I do not want the AWQ suggestion of reordering weights, because it would

require different models for different accelerators. If one has SIMD-aware weights then the

iGPU, should it be advantageous to use, would have to reorder them manually at high cost.

Rather than reorder the weights, the activations can be reordered without cost during

quantization. The weights on disk stay in canonical order, and instead the inputs are reordered

to match the order resulting from the AND and shift operations for unpacking.



From the AWQ Paper, Pg. 6.

EGEMV on the CPU

On the CPU one wants to use SIMD units to get optimal performance. I chose to use

<immintrin.h> in C++ to write the function.

Objectives:

1. Input Vector Reuse: The input vector working should stay in the L1 Cache.



2. Weight Cache Efficiency: Similar to input, anything loaded from memory should be used

to avoid reloading.

3. Zero Cache Efficiency: No Load-And-Abandon.

4. Scale Cache Efficiency: No Load-And-Abandon.

5. Pipeline Depth: If two many registers are declared, then the processor won’t be able to

leverage instruction level parallelism. Worse, the program may dump data to the stack to

increase instruction level parallelism artificially.

6. Minimize Floating Point Math: FP math is slow and increases energy usage causing

throttling. Doing 16 FLOPs in one AVX512 instruction is more efficient than 16 sequential

FLOPs, just faster.

7. Minimize write traffic to DRAM for intermediate results.

To minimize DRAM write traffic for intermediate results, I want to iterate as long as

possible to amortize the cost over as many values as possible. Iterate too long, and the input

may not be able to stay in the cache forcing expensive reloads from DRAM. This introduces a

tunable parameter ITER_LENGTH. It may be advantageous to process N_ROWS per iteration

along the input activation. Higher N_ROWS limits the value of ITER_LENGTH, but also cuts the

number of loads between L1 and registers for input values by a factor of N_ROWS. N_ROWS

accumulation registers are needed for each row. The right balance is unclear, and unfortunately

I was not able to do a scientifically sound parameter sweep. I chose the N_ROWS=1 and

ITER_LENGTH=16384.



EGEMV on the iGPU: Contributed from my CS6501 Course Project

The tradeoffs for the iGPU are similar to the CPU. I chose to use OpenCL kernels

compiled at runtime.

Objectives

1. Input Vector Reuse: The input vector should stay on-chip.

2. Weights, Scales, and Zeros should not be loaded twice.

Trade Offs:

1. Register Pressure: More parallelism hides memory latency, but a high number of in-flight

requests may trample each other in cache.

2. Atomic Memory Accesses: Atomic memory actions are very expensive, but can offer

cooperation between work groups (Thread Blocks in CUDA).

3. Explicit/Implicit vectorization: OpenCL provides many vector types and associated vector

operations that could be used to ensure that the shift operations are being executed

efficiently. However, these explicit operations do not give the scheduler as much

flexibility.

I based my investigation on a similar investigation called FastGEMV (Wang) which

focused on Nvidia GPUs and was written in CUDA. FastGEMV states that a GPU GEMV

implementation consists of two high level steps: (1) accumulating partial results per thread, and

(2) accumulating these partial results into the output vector. A hidden piece (3) that’s important,

specifically for Iris Pro Graphics, is the number of rows and columns given to each thread. This

was not explored in depth in the FastGEMV writeup.



Accumulation of the partial results inside each thread is simple, but the extent to which

the operations are vectorized explicitly was up to me. Although it was unthinkable coming from

AVX I decided to not to use vector types for anything except loading values, hoping the

scheduler would optimally map the expressed math to available SIMD units. The FastGEMV

code did not use any vector types in CUDA for mathematical operations.

Inter-Thread accumulation of generated partial results was a key concern for FastGEMV,

but for this investigation it was not. FastGEMV used warp reduction and then a shared memory

reduction if needed. Each work group (CUDA Thread Block) would do an entire row to avoid

atomic operations completely, thus I did not attempt to use them. Thread partitioning constraints

prevented me from using sub group reductions (CUDA warp reductions).

My device was only able to have work groups of size 256 and total work items (256,

256, 256). It was able to have 16777216 total work items, but in each dimension, the value

could not exceed 256. This made the thread partitioning very confusing and led me to select a

retrospectively suboptimal partitioning scheme. The first dimension would always have 2 work

items, representing two halves of the row to be processed in parallel. The second dimension

was always 64 representing 64 2 row blocks in each quantization block. The third dimension

selects the output block. This introduces decent parallelism while staying under the 128 threads

per work group limit. The limit of 256 in each dimension is respected.

Due to the fact that each work group is only dividing rows in half, the accumulation of

partial results is not difficult in shared memory. No parallel reduction is necessary. If I had more

time, I would use the first two dimensions as a composite row selector and add the remaining

threads along each row. By having each row be its own work group, sub group reductions like

FastGEMV demonstrated can be applied. Further, I would hold more data in registers to prevent

excessive interleaving. I have an unconfirmed suspicion that most of the bandwidth is being



wasted in this way. Unfortunately I did not have time to implement this but it’s something I look

forward to trying in the future.

Benchmarks and Results

Testing Setup

All benchmarks were run on a Samsung Galaxy Book 360 with an Intel i7-1165G7

Tigerlake CPU and an Intel ® Iris ® Xe Graphics iGPU. Benchmarks were built with the

build.zig in the source repo6 for Windows Subsystem for Linux. I used

OpenHardwareMonitor to control for the CPU Package Temperature between trials.

LLAMA FFN Burst

I decided to benchmark the LLAMA Feed Forward Block. This consists of three matrix

multiplications and 2 quantization passes on intermediate results. The FFN was run for 200

iterations. This was meant to be a temperature controlled small burst where throttling was

minimal. I observed that even despite these controls, variance and error is high. I would say

GGML is still king, but that my CPU routine was competitive. The iGPU routine was too far off to

chalk up the difference to error.

Table 1: GGML

10 Trial Average

Total (s) 0.42

ms / Iteration 2.08

GFLOPS 169.73

Bandwidth (lower bound) (GB/s) 47.74

6 https://github.com/e253/capstone

https://openhardwaremonitor.org/
https://github.com/e253/capstone


Table 2: Capstone CPU

10 Trial Average Change

Total (s) 0.42 2.25%

ms / Iteration 2.12 2.25%

GFLOPS 166.05 -2.17%

Bandwidth (lower bound) (GB/s) 44.31 -7.17%

Table 3: Capstone iGPU

10 Trial Average Change

Total (s) 1.43 243.86%

ms / Iteration 7.14 243.86%

GFLOPS 49.36 -70.92%

Bandwidth (lower bound) (GB/s) 13.21 -72.33%

LLAMA FFN Burndown

This trial simulates a ~500 token generation with 15000 iterations of the LLAMA FFN.

Table 4: GGML

Total (s) 29.27

ms / Iteration 1.95

GFLOPS 180.53

Bandwidth (lower bound) (GB/s) 50.77

Max Temp (Celsius) 95



Table 5: Capstone CPU

Total (s) 39.03

ms / Iteration 2.60

GFLOPS 135.40

Bandwidth (lower bound) (GB/s) 36.23

Max Temp (Celsius) 95

Table 6: Capstone iGPU

Total (s) 103.71

ms / Iterations 6.91

GFLOPS 50.96

Bandwidth (lower bound) (GB/s) 13.64

Max Temp (Celsius) 85

Conclusion

The results were a bit disappointing, but confirm an important point: model size

determines performance. Similar to how Math Kernel Library was unable to speed up llama2.c

due to memory boundedness, I was unable to assist here with optimizations that come from a

compute bound mindset. My hypothesis about speeding up EGEMV with better cache efficiency

overestimated the slowdown caused by struct splitting cache lines. There may be an opportunity

to do the FLOPS at a lower clock speed with less energy consumption. I don’t have a confident

result for the iGPU, due to the fact that my implementation is subpar.



Next Steps

I think that codebook quantization methods are a key part of achieving fast inference

with consumer memory. Codebook quantization allows for far better compression than the now

trivial output channel scaling used in this paper. Rather than having a zero and scale for part of

a row, each row of values is composed through the addition of many “codes”. Different row

blocks share a small number of codes and thus the total memory footprint of the matrix can be

as much as 16 times less than the equivalent FP32 representation. However, codebooks suffer

from a data dependent access pattern. The total memory footprint is improved by 2x over output

channel quants used in this paper, however the memory traffic and inference speed cannot fully

benefit, for now.

I’m also interested in looking into implementations with Apple AMX instructions which

may allow for better efficiency. Apple Silicon is far more efficient than x86 and offers a plethora

of platforms for experimentation including ARM NEON SIMD, Metal GPU Kernels, Neural

Engine through CoreML (or a patched kernel), and the undocumented AMX instruction set

extension for matrix SIMD.

Implementation Tips

This section may be more useful than the rest of the paper. I am attracted to Rust for its

ease of downstream use of third party libraries. Due there only being one compiler, rustc, it

builds reliably across all architectures and operating systems. However, the borrow checker

cannot guarantee safety for complex updates to an array in parallel. Use of pointers is

eschewed and this is a huge impediment to productivity when doing linear algebra operations.

C++ is the clear choice but does come with difficult builds and difficult use of

downstream dependencies, at least when using the traditional Clang/MSVC build system. Zig, a

http://github.com/corsix/amx


language and build system, takes care of these headaches. It can fetch dependencies and

statically links a tree-shaken, built-from-source Musl/MingW LibC. This made the development

experience quite nice. The source repository for this investigation demonstrates how you can

use Zig to make C++ dev better.

Appendix A: llama2.c Benchmark Details

I replaced Andrej’s matmul routine with that in the picture above and ran generations with 4

OMP threads on his stories110M LLM.

cmd: OMP_NUM_THREADS=4 ./run stories110M.bin -n 512
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